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Finite system with third-type source
boundary condition

Governing equation

One-dimensional solute-transport equation:

aC_ aZC aC
e az_Vx AC (48)

Boundary conditions:

VC,=VC-DLX,  x=0 49)
%o, x=L (50)
Initial condition:
C=0, 0<x<L at t=0 (561)
Assumptions:

1. Fluid is of constant density and viscosity.

2. Solute may be subject to first-order chemieal trans-
formation (for a conservative solute, A=0).

Flow is in x-direction only, and velocity is constant.
The longitudinal dispersion coefficient (D), which is
equivalent to D, (eq. 7), is constant.

Ll

Analytical solution

The solution to equation 48 was first presented by
Selim and Mansell (1976). The following equation is
modified from a form presented in van Genuchten and
Alves (1982, p. 66-67):

[(V—U)x]+(U—V) [(V+U)x I_J_L_]
2d | W+ 20 D

e ]
2V 2Vv(U+V) D

Cix,t)=C,

2Dt
exp[ - BlIJz :|
N , (52)

oo (75 5]
' \2D D

where U=+/VZ+4\D and B; are the roots of the
equation

’D VL
B co tB—Ef_L - (53)

For a solute that is not subject to first-order chem-
ical transformation (A=0), equation 52 can be simpli-
fied (Gershon and Nir, 1969, p. 837; van Genuchten
and Alves, 1982, p. 13) as

Cx,t)=C,

1 2VL Vx V&
D “*P|2D 4D

- BI[BICOS(B‘ )+(2D)Sin(%)}
.; 2, (VL\?, VL
o ()

ZDt
exp[ - B L2 ]

—_ . (64)
]
2D

For large values of time (steady-state solution),
equation 52 can be reduced (van Genuchten and Alves,
1982, p. 59) to

[(V—U)x] (U-v) [((V+U)x) UL]
exp + eXp —_——

0x)=C,4 2D (U+V) 2D D (55
[(U+V) __(U-vy ]exp[_gg]
2V 2V(U+V) D
Comments:

The roots of equation 53 can be found by standard
root-search techniques. An iterative technique using
Newton’s second-order correction method was
described in the preceding section.

Linear equilibrium adsorption and ion exchange can
be simulated by first dividing the coefficients D and V
by the retardation factor, R (eq. 15). (Note: U in egs.
52 and 55 would be given by U=+/V +4AD"). Tempo-
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ral variations in source concentration can be simulated
through the principle of superposition (eq. 39).

Description of program FINITE

The analytical solution to the one-dimensional
solute-transport equation for a finite system with a
third-type (or first-type) source boundary condition at
the inflow end is computed by the program FINITE,
described in detail in the preceding section. The main
program reads and prints all input data needed to
specify model variables. The required input data and
the format used in preparing a data file are shown in
table 1.

The main program then calls subroutine ROOTS to
compute the positive roots of equation 53 when a
third-type source boundary condition is specified, and
executes a set of nested loops. The inner loop calls
subroutine CNRML3 to calculate the concentration
for a particular time value and distance; the outer loop
cycles through all specified time values and prints a
table of concentration in relation to distance for each
time value. Graphs of concentration in relation to
distance can also be plotted.

Subroutines ROOT3 and CNRML3

Subroutine ROOTS3 calculates the roots of the equa-
tion ascot(a)—bea?+c=0. The procedure followed is
similar to that for subroutine ROOT1 (described in the
preceding section), with w/2 as an initial estimate for
the first root.

Subroutine CNRMLS3 calculates the normalized con-
centration (C/C,) for a particular time value and
distance value, using equation 52 for a solute subject
to first-order chemical transformation and equation 54
if the solute is conservative (\=0). The number of
terms taken in the infinite series summation is speeci-
fied in the input data.

Sample problem 2

In sample problem 2, the solute introduced into the
soil column is assumed to be conservative. Model
variables are identical to those in sample problem 1a
and are

Velocity (V) =0.6 in‘h
Longitudinal dispersion (D) =0.6 in®/h
System length (L) =12 in
Solute concentration opposite =1.0 mg/L.

inflow boundary (C,)

Concentrations are calculated for points 0.5 in apart at
elapsed times of 2.5, 5, 10, 15, and 20 hours.

The input data set for sample problem 2 is shown in
figure 6A4; a computer plot of concentration profiles
generated by the program FINITE is shown in figure
6B. Output for this sample problem is presented in

attachment 4. Sample problem 2 required 4.3 s of CPU
time on a Prime model 9955 Mod II.

Comparison of figures 4B and 6B shows that the
principal difference between the solutions for a first-
type and a third-type source boundary condition is
reflected in the solute concentrations near the inflow
boundary at early times. As mentioned previously,
these differences decrease with decreasing values for
the quantity D/V.

Semi-infinite system with first-type
source boundary condition
Governing equation

One-dimensional solute-transport equation:

aC azc aC
—=D5-V——1C (56)

Boundary conditions:

c=C,, x=0 (567
c2-0, x=c (58)
Initial condition:
C=0, 0<x<oo at t=0 (59)
Assumptions:

[uy

. Fluid is of constant density and viscosity.

2. Solute may be subject to first-order chemical trans-

formation (for a conservative solute, A=0).

Flow is in x-direction only, and velocity is constant.

. The longitudinal dispersion coefficient (D), which is
equivalent to D, (eq. 7), is constant.

~ o

Analytical solution

The following equation was modified from Bear
(1972, p. 630) and van Genuchten and Alves (1982,
p- 60):

Clx, ty=Se {exp[ sp(V - U)} erfe [; \/gt]

+exp[2D(V+U)} erfc[ifj/gﬂ} (60)

where U=+/VZ+4AD.

The analytical solution for a solute not subject to
first-order chemical transformation (A\=0) was derived
by Ogata and Banks (1961) as
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Sample Problem 2 -~ Solute transport in a finite-length

soil colunn with a third-type boundary condition at x=0

Model Parameters: L=12 in, V=0.6 in/h, D=0.6 in**2/h
K1=0.0 per h, C0=1.0 mg/L

3 25 05 50 1
MG/L IN/H IN**2/H PER HOUR INCHES HOURS
1.0 0.6 0.6 0.0 12.0 1.2
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5
8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5
12.0
2.5 5.0 10.0 15.0 20.0

ModelL Parameters: L=12 in, V=0.6 in/h, D=0.6

Sample Problem 2 ~- Solute transport in a finite-lLength
soll column with a third-type boundary condition at x=0

Lnx2/h

K1-0.0 per h, CO=1.0 mg/L

T T
ELAPSED TIME, IN HOURS
O TIME - 2.500
4 TIME -~ S.000
+ TIME - 10.00
x  TIME - 15.00
¢ TIME - 20.00 b

NORMALIZED CONCENTRATION

0 1.2 2.4 3.6 6 7.2 8.4

4.8
DISTANCE ALONG X-AXIS, IN INCHES

9.8 10.8 12

Figure 6.—(A) Sample input data set, and (B) concentration profiles generated by the program
FINITE for a conservative solute in a finite-length system with third-type source boundary

condition after 2.5, 5, 10, 15, and 20 hours (sample problem 2).
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C(x,t)=%{erfc[%]+exp[%]-erfc[;—\j%%]}. (61)

For large values of time (steady-state solution),
equation 60 reduces (modified from Bear, 1972, p. 631)
to

C(x)=C, exp [%(V—U)]. 62)

Comments:

Equations 60 and 61 are presented in this form to
utilize computer routines that accurately compute the
product of an exponential term (exp [x]) and the
complementary error function (denoted as erfe [y]).

Linear equilibrium adsorption and ion exchange can
be simulated by first dividing the coefficients D and V
by the retardation factor, R (eq. 15). (Note: U in eqs.
60 and 62 would be given by U=+/V +4AD"). Tempo-
ral variations in source concentration can be simulated
through the principle of superposition (eq. 39).

Description of program SEMINF

The program SEMINF computes the analytical
solution to the one-dimensional solute-transport equa-
tion for a semi-infinite system with a first-type or
third-type source boundary condition at the inflow
end. It consists of a main program and two
subroutines—CNRML1 and CNRMLS3. The function
of the main program and subroutine CNRML1 are
outlined below; the program code listing is presented
in attachment 2. Subroutine CNRMLS3, called when a
third-type boundary condition is specified, is
described in a subsequent section.

The program also calls the subroutine EXERFC
and the output subroutines TITLE, OFILE, and
PLOT1D, which are common to most programs
described in this report. These subroutines are
described in detail later.

Main program

The main program reads and prints all input data
needed to specify model variables. The required input
data and the format used in preparing a data file are
shown in table 2.

The program next executes a set of nested loops.
The inner loop calls subroutine CNRML1 to calculate
the concentration for a particular time value and
distance. The outer loop cycles through all specified
time values and prints a table of concentration in
relation to distance for each time value. Graphs of
concentration in relation to distance can also be
plotted.

Subroutine CNRML1

Subroutine CNRMLI] calculates the normalized con-
centration (C/C,) for a particular time value and
distance, using equation 60 for a solute subject to
first-order chemical transformation and equation 61 if
the solute is conservative (A\=0).

Sample problems 3a and 3b

Two sample problems are presented. In sample
problem 3a, a conservative solute is introduced into a
long soil column. The system is idealized as being
semi-infinite in length, with model variables as

Velocity (V) =0.6 in/h
Longitudinal dispersion (D) =0.6 in*h
Solute concentration at inflow =1.0 mg/L.

boundary (C,)

Concentrations are calculated for points 0.5 in apart at
elapsed times of 2.5, 5, 10, 15, and 20 hours.

In sample problem 3b, solute is removed by both
first-order solute decay and linear equilibrium adsorp-
tion. Additional model variables are

Solute half-life (T, ) =7.6 days

Soil bulk density (p,) =0.047
Ib(mass)/in®

Porosity (n) =0.45

Slope of adsorption isotherm (k) =70 in*b
(mass).

From these values, the following terms are obtained
using equations 15 and 25:

Decay constant (\) =0.0038 per
hour
Retardation factor (R) =8.31
Scaled velocity (V") =0.072 in/h
Scaled dispersion coefficient (D)  =0.072 in%h.

Concentrations are calculated for points 0.5 in apart at
elapsed times of 20, 50, 100, and 150 hours.

Input data sets for sample problems 3a and 3b are
shown in figures 7A and 8A4; computer plots of con-
centration profiles generated by the program SEM-
INF are also shown. Qutput for sample problem 3a is
presented in attachment 4. Sample problems 3a and 3b
each required 3 s of CPU time on a Prime model 9955
Mod II.

Comparison of the concentration profiles at 20 hours
in each plot (figs. 7B and 8B) shows the effect of both
solute decay and adsorption on solute movement.
Comparison of figures 7B and 4B shows the difference
in concentration profiles that would result if the
solution for a semi-infinite system were used to sim-
ulate transport in a finite system. The most significant
difference is the lower solute concentrations and the
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Table 2. —Input data format for the program SEMINF
Data Variable
set Columms  Format name Description
1 1~ 60 A60 TITLE Data to be printed in a title box on first page of program output.
Last line in data set must have an "=" in column 1. First four lines
are also used as title for plot.
2 1-4 I4 NBC Boundary condition type (NBC = 1 for first-type boundary condition;
NBC = 3 for third-type boundary condition).
5-8 I4 NX Number of x-coordinates at which solution will be evaluated.
8 - 12 I4 NT Number of time values at which solution will be evaluated.
13 - 18 14 IPLT Plot control variable. Concentration profiles will be plotted if IPLT
is greater than 0.
3 1-10 Al CURITS Character variable used as label for units of concentration in program
output.
11 - 20 AlD VUNITS Units of ground-water velocity.
21 - 30 A0 DUNITS Units of dispersion coefficient.
31 - 40 Al0 KUNITS Units of solute-decay coefficient.
41 - 50 Al0 LUNITS Units of length.
51 - 60 Al0 TUNITS Units of time.
4 1-10 F10.0 co Solute concentration at inflow boundary.
11 - 20 F10.0 VX Ground-water velocity in x-directionm. 1
21 - 30 Fl1l0.0 DX Longitudinal dispersion coefficient. 1
31 - 40 Fl0.0 DK First-order solute decay coefficient. !
41 - 50 F10.0 XSCLP Scaling factor by which x-coordinate values are divided to convert them
to plotter inches.
5 1 - 80 8F10.0 X(I) X-ioordinates at which solution will be evaluated (eight values per
ine).
6 1- 80 8F10.0 (I Time values at which solution will be evaluated (eight values per

line).

1411 units must be consistent.

steeper gradients near x=12.0 in (fig. 7B). As men-
tioned previously, differences between the two solu-
tions decrease with increased column Peclet number
(P) and lower values for the number of displaced pore
volumes (T).

Semi-infinite system with third-type
source boundary condition

Governing equation

One-dimensional solute-transport equation:

3C__C _4C
at'Daxz —Vax—)\C (63)
. Boundary conditions:
VCO=VC+D%, x=0 (64)

C, %g=0, X= (65)
Initial condition:
C=0, O<x<eo at t=0 (66)
Assumptions:

1. Fluid is of constant density and viscosity.

2. Solute may be subject to first-order chemical trans-
formation (for a conservative solute, A=0).

3. Flow is in x-direction only, and velocity is constant.

4. The longitudinal dispersion coefficient (D), which is
equivalent to D, (eq. 7), is constant.

Analytical solution

The following equation is modified from Cleary and
Ungs (1978, p. 10):
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Sample Problem 3a -- Solute transport in a semi-infinite
soil column with a first-type boundary condition at x=0
Model Parameters: V=0.6 in/h, D=0.6 in**2/h
K1=0.0 per h, C0=1.0 mg/L
1 25 05 1
MG/L IN/H IN**2/H PER BOUR INCHES HOURS
1.0 0.6 0.6 0.0 1.2
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5
8.0 8.5 9.0 9.5 10.0 0.5 11.0 11.5
12.0
2.5 5.0 10.0 15.0 20.0
Sample Problem 30 -— Solute transport in a semi-infinite
soll column with o first-type boundory condition at x=0
Model Parameters: V=0.6 in/h, D=0.6 inxx2/h
K1-0.0 per h, C0-1.0 mg/L
1 T T T T T T T
ELAPSED TIME, IN HOURS
o TIME - 2.500
a4 TIME - 5,000
+ TIME - 10.0)
x TIME - 15.00
0.9 ¢ TIME ~ 20.00 7
0.6 -
0.7 - N 4
=
=
i(]—:' 0.6 - -
h%
=
=
[f8)
O
=
S o0s 4
o)
o
N %
.
E 04l ]
%
=
=
0.3
0.2 B
‘
err \\\k\\»\\;
0 1 1 1 1 A ] v L o o £
0 1.2 2.4 3.6 4.8 6 7.2 8.4 9.6 10.8 12

DISTANCE ALONG X-AXIS, IN INCHES

Figure 7.—(A) Sample input data set, and (B) concentration profiles generated by the program SEMINF
for a conservative solute in a semi-infinite system with first-type source boundary condition after

2.5, 5, 10, 15, and 20 hours (sample problem 3a).
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A

Sample Problem 3b -- Solute transport in a semi-infinite
soil colum with a first-type boundary condition at x=0
Model Parameters: V=0.072 in/h, D=0.072 in**2/h

K1=0.0038 per h, C0=1.0 mg/L
Solute is subject to first-order decay and linear adsorption

1 25 04 1
MG/L IN/H IN**2/H PER HOUR INCHES HOURS
1.0 0.072 0.072 0.0038 1.2
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5
8.0 8.5 9.0 8.5 10.0 10.5 11.0 11.5
12.0
20.0 50.0 100.0 150.0
Sample Problem 3b -- Solute transport in a semi-infinite
sotl column with o first-type boundary condition at x=0
Model Porameters: V=0.072 in/h, 0=0.072 inxx2/h
K1-0.0038 per h, CO-1.0 mg/L
1 T T T T T T T T T
ELAPSED TIHE, IN HOURS
0 TIME - 20.00
& TIME - 50.00
+ TIME - 100.0
0.8 F X TIME - 150.0 1
0.8 |
0.7
z
=
iu—:‘ 0.6 |
2
=]
z
i
o
4
8 ost+
=
]
=
3
£ o4l
o4
o
=
0.3
0.2
0.1 |
0 1 1 1 J
0 1.2 2.4 3.6 4.8 6 7.2 8.4 9.6 10.8 12
[ DISTANCE ALONG X-AXIS, IN INCHES

Figure 8.—(A) Sample input data set, and (B) concentration profiles generated by the program SEMINF
for a solute subject to first-order decay and linear equilibrium adsorption in a semi-infinite system
with first-type source boundary condition after 20, 50, 100, and 150 hours (sample problem 3b).
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_covz{ [xV } [x+Vt]
C(x,t)= D 2 exp D At [serfe /Dt

+ (% -1 )exp [Q’—(ﬁ(V - U)]- erfc [’2(\_/%2]

_(%4. l)expli%(v-f-U):|'erf0[§¢/g§:|}, (67)

where

U=+/VZ+41D.

For a conservative solute (A=0), the solution to
equation 63 is given by Lindstrom and others (1967)
and van Genuchten and Alves (1982, p. 10) as

o x-vt] v [(x—Vt)z}
C(x,t)—Co{zerfc[z \/ﬁ]"‘ P Dt

1. vx Vzt] (Vx) |:x+Vt]}
2[1+D+D exp D erfe st (68)

For large values of time (steady-state solution),
equation 67 can be reduced (Gershon and Nir, 1969, p.
837) to

2V
(V+U)

C(x)=C -exp[%(V—U)]. (69)

Comments:

Equations 67 and 68 are presented in this form to
utilize computer routines that compute the product of
an exponential term and the complementary error
function. For extremely small values of A, calculations
of concentration values using equation 67 may be
subject to round-off errors as both the denominator in
the first term and the terms within the bracket
approach zero.

Linear equilibrium adsorption can be simulated by
dividing the coefficients D and V by the retardation
factor, R (eq. 15). Temporal variations in source
concentration can be simulated through the principle
of superposition (eq. 39).

Description of program SEMINF

The analytical solution to the one-dimensional
solute-transport equation for a semi-infinite system
with a third-type (or first-type) source boundary con-
dition is computed by the program SEMINF,
described in detail in the preceding section. The main
program reads and prints all input data needed to

specify model variables. The required input data and
the format used in preparing a data file are shown in
table 2.

The program next executes a set of nested loops.
The inner loop calls subroutine CNRML3 to calculate
the concentration for a particular time value and
distance. The outer loop cycles through all specified
time values and prints a table of concentration in
relation to distance for each time value. Graphs
of concentration in relation to distance can also be
plotted.

Subroutine CNRML3

Subroutine CNRMLS3 calculates the normalized con-
centration (C/C,) for a particular time value and
distance, using equation 67 for a solute subject to
first-order chemical transformation and equation 68 if
the solute is conservative (A=0).

Sample problem 4

In sample problem 4, a conservative solute is intro-
duced into a long soil column. The system is idealized
as being semi-infinite in length, with model variables
as

Velocity (V) =0.6 in/h
Longitudinal dispersion (D) =0.6 in%h
Solute concentration opposite inflow

boundary (C,) =1.0 mg/L.

Concentrations are calculated for points spaced 0.5 in
apart at elapsed times of 2.5, 5, 10, 15, and 20 hours.

The input data set for sample problem 4 is shown in
figure 9A; a computer plot of concentration profiles
generated by the program SEMINF is shown in figure
9B. Because of the third-type boundary condition,
solute concentration computed near x=0 at early
times differs from C,.

Program output for this sample problem is pre-
sented in attachment 4. Sample problem 4 required
3.6 s of CPU time on a Prime model 9955 Mod II.

Two-Dimensional Solute
Transport

Several analytical solutions are available for the
two-dimensional form of the solute-transport equation
(eq. 10). These solutions can be used to simulate
transport of contaminants from sources within rela-
tively thin aquifers, provided the sclute is generally
well mixed throughout the thickness of the aquifer and
vertical concentration gradients are negligible. Trans-
port of contaminants within a vertical section along
the centerline of a contaminant plume in a thick
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A
. Sample Problem 4 -- Solute transport in a semi-infinite
80il column with a third-type boundary condition at x=0
Model Parameters: V=0.6 in/h, D=0.6 in**2/h
K1=0.0 per h, C0=1.0 mg/L
3 25 05 1
MG/L IN/H IN**2/H PER HOUR INCHES HOURS
1.0 0.6 0.8 0.0 1.2
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5
8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5
12.0
2.5 5.0 10.0 15.0 20.0
B
Somple Problem 4 —- Solute transport in o semi-infinite

sotl column with o third-type boundary condition at x=0
Model Parameters: V=0.6 in/h, D=0.6 inxx2/h
K1-0.0 per h, CO0-1.0 mg/L
T T T T T

ELAPSED TIME, IN HOURS
- 0 TIME - 2.500

4 TIME - 5.000

+ TIME = 10.00

0 9‘ x TIME = 15.00
. ¢ TIME - 20.00 i

0.8

0.7

0.5

0.4

NORMALIZED CONCENTRATION

0.3

0.2

0 L L o L A o e S

a 1.2 2.4 3.6 4.8 6 7.2 8.4 8.6 10.8 12

. DISTANCE ALONG X-AXIS, IN INCHES
Figure 9.—(A) Sample input data set, and (B) concentration profiles generated by the program SEMINF
for a conservative solute in a semi-infinite system with third-type source boundary condition after
2.5, 5,10, 15, and 20 hours (sample problem 4).
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aquifer can be simulated with these solutions if the
solute source is wide enough that horizontal concen-
tration gradients, which cause solute movement per-
pendicular to the centerline, are negligible.

In the first solution presented, the aquifer is
assumed to be of infinite areal extent and to have a
continuous point source in the x,y plane (equivalent to
a line source extending the entire thickness of the
aquifer). Fluid having a known solute concentration is
injected into the aquifer at a constant rate. It is
further assumed that the injection rate is small, and
that the uniform flowfield around the well is not
disturbed. Solutions in which radial flow away from an
injection well is considered are discussed by Hseih
(1986). A solution for an areal source where solute
enters the aquifer at a known flux and concentration is
given by Codell and others (1982).

For the remaining solutions presented in this sec-
tion, aquifers are assumed to be of semi-infinite length
and to have a solute source at the inflow boundary (at
x=0). The width of the aquifer can be treated as being
finite or infinite in extent. In an infinite-width system,
impermeable boundaries at the edges of the aquifer
are presumed to be far enough away as to have a
negligible effect on solute distribution within the area
of interest. Idealized diagrams of both types of sys-
tems are shown in figure 10.

One type of source configuration, referred to as a
“strip” source (Cleary and Ungs, 1978), has a finite
width extending from y=Y, to y=Y, at x=0 (fig. 10).
The concentration within the strip is uniform and
equal to C,. At the boundary of the strip source (at
y=Y, or y=Y,), the concentration is equal to 0.5 C,.
Elsewhere along the inflow boundary, the concentra-
tion is zero. Combinations of strip sources could be
used to simulate odd-shaped concentration distribu-
tions or multiple sources through use of the principle
of superposition, as previously described.

A solute source can also have a “gaussian” concen-
tration distribution (Cleary and Ungs, 1978, p. 80)
given by

2
M_)] =0, (D)

20?

C= Cmexp[

where

C,, =maximum concentration at center of gaussian

concentration distribution,

Y, =y-coordinate of center of solute source (X,=0),

and
o =standard deviation of the gaussian distribu-
tion.

A field situation in which a gaussian distribution can
be found is shown in figure 11. The solute concentra-
tion at the waste-disposal pond is unknown, but a line
of monitoring wells downgradient from the site and

normal to the direction of flow shows a concentration
distribution that approximates a gaussian curve. (This
is expected, as the concentration distribution along a
cross section normal to the direction of flow taken at
any point downgradient from an ideal point source
would be gaussian.) The standard deviation of the
distribution can be determined from the data as

oYY
v—-2In(C/C_y

(71)

where C is the concentration observed at a well a
distance (y—Y, away from the point of maximum
concentration.

Solving equation 71 may lead to differing values of o
if the observed data are not perfectly gaussian. An
alternative procedure (R.M. Cleary, Princeton Uni-
versity, written commun., 1978) is to (1) normalize the
data by dividing the observed concentrations by C,,,
(2) plot a histogram of the normalized concentration
with respect to y, and (3) calculate the area under the
curve. The standard deviation can be approximated by
o=area/\/2m. A sample problem illustrating the use of
both methods is presented later.

This section presents analytical solutions for an
® Aquifer of infinite areal extent with a continuous

point source, when fluid is injected at a constant

rate and concentration,
® Semi-infinite aquifer of finite width with a strip
source,
® Semi-infinite aquifer of infinite width with a strip
source, and
® Semi-infinite aquifer of infinite width with a gaus-
sian source.
All solutions ean account for first-order solute decay.
Four computer programs (POINT2, STRIPF,
STRIPI and GAUSS) were written to calculate con-
centrations in these systems as a function of distance
and elapsed time.

Aquifer of infinite areal extent with
continuous point source

Governing equation

The analytical solution for a continuous point source
has been presented by several authors, including Bear
(1972, 1979), Fried (1975, p. 132), and Wilson and
Miller (1978). The solution is derived by first solving
the solute-transport equation for an imstantaneous
point source and then integrating the solution over
time. The two-dimensional solute-transport equation
for an instantaneous point source is given by
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2 2
€_p2Cp Tl v¥ \c
at ax

Yoy? T ax
+%dt Chx-X)By—-YIst—t)  (72)

Boundary conditions:

C, %=O, X=*0 (73)
oC_ s
07 5_};_07 y=*x, (74)

where
V =V,, velocity in x-direction,
Q' =fluid injection rate per unit thickness of aqui-
fer,
n =aquifer porosity,
dt =infinitesimal time interval,
d =dirac delta (impulse) function,
X., Y =x- and y-coordinates of point source, and
t’ =instant at which point source activates
(assumed to be 0).

Initial condition:
C=0, —oo<y<+wand —w<x<t+ow att=0 (75)

Assumptions:

E—l

Fluid is of constant density and viscosity.

2. Solute may be subject to first-order chemical trans-
formation (for a conservative solute, A=0).

3. Flow is in x-direction only, and velocity is constant
(no radial flow).

4. The longitudinal and transverse dispersion coeffi-

cients (D, and D,) are constant.

Analytical solution

The following equation, modified from Bear (1979,
p. 274), represents the analytical solution for an
instantaneous point source integrated with respect to
time, such that

CQ . [V(x—Xc)] ftl
inm/DD, P 2D, o

v ) (x=XJ)? (y—Yc)z}
exp[ ( 4Dx+)\ T D1 1D,z dr,(76)

Cx,y,t)=

where T is a dummy variable of integration for the
time integral.

The steady-state solution is given (modified from
Bear, 1979, p. 274) as

Vx—-X,
Q Coexp[ (;Dx )]

2nm\/D,D,

\& (x—Xc)i(y—Yc)z]
K \/(4Dx+")[ p. b, || ™

Clx,y)=

y

where K, is the modified Bessel function of second
kind and zero order. Tables of values and polynomial
approximations for K (x) are given by Abramowitz
and Stegun (1964, p. 37, p. 417-422).

Comments:

The integral in equation 76 cannot be simplified
further and must, therefore, be evaluated numeri-
cally. A Gauss-Legendre numerical integration tech-
nique, used in the computer program written to
evaluate the analytical solution (eq. 76), is described
later.

The integral in equation 76 is difficult to evaluate
correctly at x and y values near the point source.
(Mathematically, when (x-X,) and (y-Y,) approach
zero, the integral in eq. 76 becomes a form of the
exponential integral, E;(t), which becomes infinite at
t=0; see Abramowitz and Stegun, 1964, p. 228.)
Farther away from the point source, generally when
(x-X,)? is larger than V2, a meaningful solution can be
obtained.

Linear equilibrium adsorption and ion exchange can
be simulated by first dividing Q' and the coefficients
D,, Dy, and V by the retardation factor, R (eq. 15).
Temporal variations in source concentration or multi-
ple sources can be simulated through the principle of
superposition.

Description of program POINT2

The program POINTZ2 computes the analytical solu-
tion to the two-dimensional solute-transport equation
for an aquifer of infinite areal extent with a continuous
point source. It consists of a main program and the
subroutine CNRML2. The functions of the main pro-
gram and subroutine are outlined below; the program
code listing is presented in attachment 2.

The program also calls subroutine GLQPTS and the
output subroutines TITLE, OFILE, PLOT2D, and
CNTOUR, which are common to most programs
described in this report. These subroutines are
described in detail later.

Main program

The main program reads and prints all input data
needed to specify model variables. The required input



28

TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS

N .
S N AN AN AN IR ANINTIDIIIINDININNYY Impermeable boundary MIDOODANNINANNNANNNNNNANN
Landfill
. N Direction of ground-water flow
e ittty
IL‘:\' f;“ 4 P
[ RYN B!
A \7:“._‘;\\‘[‘: M Al
FN7,a =0 £
’l-/\/‘\’ \',\-. . .
ARIIAY Y=y1:
x=0 |y=0

Zone of contamination
AR AR RTINS

X
§Ev o
N
impermeable boundary AN RN RN NN OO NN NN Y

VERTICAL SECTION A-A'

L]
A TR L . A
o l- ndfill
A Land surface
N Jo
L]
v AT
Water ST —
table

e . Direction of ground-water flow
... Zone of contamination I

N N\
AN NN NN NN SN NN NN Y Impermeable boundary SN NIRRT RN NN NN NN NN NN

B oo

Yy
PLAN VIEW
.
Landfill
PR ey e iy ,Y=V2",’
AR ES .
F 1
AR S Y
PSS N
AN y=y1’

Direction of ground-water flow

Zone of contamination

x|<
nln
o] ©

-oQ
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Table 3.—Input data format for the program POINT2

Data Variable
set Colums _ Format name Description
1 1-60 A60 TITLE Data to be printed in a title box on the first page of program output.
Last line in data set must have an "=" in columm 1. First four lines
are also used as title for plot.
2 1- 4 14 NX Number of x-coordinates at which solution will be evaluated.
5- 8 14 NY Number of y-coordinates at which solution will be evaluated.
9-12 I4 NT Number of time values at which solution will be evaluated.
13 - 16 I4 NMAX Number of terms used in the numerical integration technique (must be
equal to 4, 20, 60, 104, or 256).
17 - 20 1I4 IFLT Plot control variable. Contours of normalized concentration will be
plotted if IPLT is greater than 0.
3 1-10 Al0 CUNITS Character variable used as label for units of concentration in program
output.,
11 - 20 A10 VUNITS Units of ground-water velocity.
21 - 30 Al0 DUNITS Units of dispersion coefficient.
31 - 40 Al0 KUNITS Units of solute-decay coefficient.
41 - 50 Al0 LUNITS Units of length.
51 - 60 Al0 TUNITS Units of time.
4 1-10 F10.0 co Solute concentration in injected fluid.
11 - 20 F10.0 X Ground-water velocity in x-direction.
21 - 30 F10.0 DX Longitudinal dispersion coefficient.
31 - 40 F10.0 DY Transverse dispersion coefficient.
41 - 50 F10.0 DK First-order solute-decay coefficient.
5 1-10 F10.0 XC X-coordinate of point source.
11 - 20 F10.0 YC Y-coordinate of point source.
21 - 30 Fl10.0 QM Fluid injection rate per unit thickness of aquiferl.
31 - 40 F10.0 POR Aquifer porosity.
6 1 - 80 8F10.0 X(I) X-]c-g::c)linates at which solution will be evaluated (eight values per
7 1-80 8F10.0 (I Y-iggzc)ﬁnates at which solution will be evaluated (eight values per
8 1-80 8Fl0.0 (1) Thﬁn\en)alues at which solution will be evaluated (eight values per
29 1-10 F10.0 XSCLP Scaling factor by which x-coordinate values are divided to convert them
to plotter inches.
11 - 20 F10.0 YSCLP Scaling factor used to convert y-coordinates into plotter inches.
21 - 30 Fl0.0 DELTA Contour increment for plot of normalized concentration (must be between

0.0 and 1.0).

1For the solution to be consistent, units of QM must be identical to those of the dispersion coefficients,

2Dat’.a line is needed only if IPLT (in data set 2) is greater than 0.

data and the format used in preparing a data file are The program next executes a set of three nested
shown in table 3. The routine then calls the subroutine  loops. The inner loop calls subroutine CNRML2 to
GLQPTS, which reads the data file GLQ.PTS contain-  calculate the concentration at all specified y- ‘
ing values of the positive roots and weighting func-  coordinate values for a particular x-coordinate value
tions used in the Gauss-Legendre numerical integra- and time. The middle loop cycles through all x-
tion technique. coordinate values. The outer loop cycles through all
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specified time values and prints a table of concentra-
tions in relation to distance for each time value. Model
output can also be plotted as a series of maps showing
lines of equal solute concentration.

Subroutine CNRML2

Subroutine CNRMLZ calculates the normalized con-
centration (C/C,) for a particular time value and
distance. The integral in equation 76 is evaluated
through a Gauss-Legendre numerical integration
technique. The Gauss integration formula used is
given by Abramowitz and Stegun (1964) as

[ llf(x)dx=2wi-f(zi), (78)
- i=1

where
n =order of Legendre polynomial,

w; =weighting functions,

f(z;) =value of integrand calculated with variable of

integration equal to z;, and
z, =roots of n"* order polynomial.

The normalized roots of the Legendre polynomial and
the corresponding weighting functions are passed by
subroutine GLQPTS and scaled in the subroutine to
account for the non-normalized limits of integration
(from 0 to t rather than from —1 to +1).

The number of terms summed in the numerical
integration (equivalent to the order of the polynomial)
is specified by the user. Roots of the Legendre poly-
nomial of order 4, 20, 60, 104, and 256 (from data in
Cleary and Ungs, 1978) are provided in data file
GLQ.PTS. In general, the more terms used in the
integration, the more accurate the approximation;
however, this must be weighed against the corre-
sponding increase in computational effort and time.
Additional discussions of the numerical integration
technique are presented in a later section describing
subroutine GLQPTS.

Sample problem 5

In sample problem 5, an abandoned borehole that
penetrates a brackish artesian formation is discharg-
ing into an overlying freshwater aquifer. Model vari-
ables are

Aquifer thickness =100 ft
Discharge rate =1,250 ft?/d
Ground-water velocity (V) =2 ft/d
Longitudinal dispersivity (a;) =30 ft
Transverse dispersivity (a) =6 ft

Source concentration (C,) =1,000 mg/L
Point-source location (X,,Y,) =0, 500 ft
Aquifer porosity (n) =0.25.

From these values, the terms obtained are
Discharge rate per unit thickness

of aquifer (Q") =12.5 ft¥/d
Coefficient of longitudinal

dispersion (D,) =60 ft/d
Coefficient of transverse

dispersion (D) =12 ft%d.

Concentrations are calculated at 10-ft intervals along
the x-axis from x=-60 ft to x=200 ft, and at 5-ft
intervals along the y-axis from y=450 ft to y=550 ft.
Chloride concentration distribution after 25 days and
100 days is simulated.

The input data set for sample problem 5 is shown in
figure 124. A computer-generated contour plot of
normalized concentrations (C/C,) at both time values
is shown in figure 12B. Program output for this
sample problem is presented in attachment 4. Sample
problem 5 required 9 s of CPU time on a Prime model
9955 Mod II.

Aquifer of finite width with
finite-width solute source

Governing equation

Two-dimensional solute-transport equation:

3C__ #*C _ #C__ oC
E‘—Dx e +Dy'éF—V a—x—)\C (79)

Boundary conditions:

C=GC,, x=0and Y,< y<Y, (80a)
C=0, x=0 and y<Y, or y>Y, (80b)
c, %=0, y=0 @1)

c, %(}—3= . y=W (82)
c,L=0, x== 83)

where
V =velocity in x-direction,
Y, =y-coordinate of lower limit of solute source at
x=0,
Y, =y-coordinate of upper limit of solute source at
x=0, and
W =aquifer width.
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Initial condition:

C=0, 0<x<o and 0<y<W at t=0 (84)

Assumptions:

1. Fluid is of constant density and viscosity.

2. Solute may be subject to first-order chemical trans-

formation (for a conservative solute, A=0).

Flow is in x-direction only, and velocity is constant.

4. The longitudinal and transverse dispersion coeffi-
cients (D,, D,) are constant.

®

Analytical solution

The following equation is modified from Hewson
(1976):

C(X,y,t)=CoanPn cos (my)
n=0

V- -3t
.{exp[x(ZDxB)]erfc[;i/gxt]

x(V+B) x+Bt
*e"p[ 2D, ]erf"[zvmtﬂ (85)
where
12, n=0
an{ 7, 10
Y2_Y1 n:O
p = w
174 [sin (nYy)—sin (nY,)] n>0
nmw ’
n=nn/W, n=0,1,2,3. ..
B=\/V?+4D,(n°D,+\)
Comments:

Terms in the infinite series in equation 85 tend to
oscillate, and the series converges slowly for small
values of x; thus, a large number of terms may be
needed to ensure convergence. A good initial estimate
is 100 terms. For larger values of x, the series
converges more quickly.

The solution can yield results with either D, or A=0.
Linear equilibrium adsorption and ion exchange can
be simulated by first dividing the coefficients D,, Dy,
and V by the retardation factor, R (eq. 15). Temporal
variations in solute concentration and odd-shaped
source configurations can be simulated through the
principle of superposition.

Description of program STRIPF

The program STRIPF computes the analytical solu-
tion to the two-dimensional solute-transport equation
for an aquifer of finite width with a finite-width or
“strip” solute source at the inflow boundary. It con-
sists of a main program and subroutine CNRMLF.
The functions of the main program and subroutine are
outlined below; the program code listing is presented
in attachment 2.

The program also calls the subroutine EXERFC
and the output subroutines TITLE, OFILE,
PLOT2D, and CNTOUR, which are common to most
programs described in this report. These subroutines
are described in detail later.

Main program

The main program reads and prints all input data
needed to specify model variables. The required input
data and the format used in preparing a data file are
shown in table 4.

The program next executes a set of three nested
loops. The inner loop calls subroutine CNRMLF
to calculate the concentration at all specified y-
coordinate values for a particular x-coordinate value
and time. The middle loop cycles through all x-
coordinate values. The outer loop cycles through all
specified time values and prints a table of concentra-
tion in relation to distance for each time. Model output
can also be plotted as a map showing lines of equal
solute concentration.

Subroutine CNRMLF

Subroutine CNRMLF calculates the normalized
concentration (C/C,) for a particular time value and
distance using equation 85. The maximum number of
terms in the infinite series summation is specified by
the user. Because terms in the series tend to oscillate,
a subtotal of the last 10 terms is kept, and when the
subtotal is less than a convergence criterion set at
1x107 2, the series summation is halted. If the series
does not converge after the specified maximum num-
ber of terms are taken, a warning message is printed
on the program output.

Sample problem 6

In sample problem 6, migration of chloride ion in
landfill leachate through a narrow, relatively thin,
valley-fill aquifer is simulated. Model variables are

Aquifer width (W) =3,000 ft
Lower limit of solute source (Y,) =400 ft
Upper limit of solute source (Y,) =2,000 ft
Ground-water velocity (V,) =1 ft/d
Longitudinal dispersivity (o) =200 ft
Transverse dispersivity (o) =60 ft
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Data Variable
set Columns _ Format name Description
1 1-60 A60 TITLE Data to be printed in a title box on the first page of program output.
Last line in data set must have an "=" in colum 1. First four lines
are also used as title for plot.
2 1-4 I4 ) 12.4 Number of x-coordinates at which solution will be evaluated.
5-8 I4 NY Number of y-coordinates at which solution will be evaluated.
9-12 I4 NT Number of time values at which solution will be evaluated.
13 - 16 I4 NMAX Maximum number of terms used in the infinite series summation.
17 - 20 I4 IPLT Plot control variable. Contours of normalized concentration will be
plotted if IPLT is greater than O.
3 1~-10 Al10 CUNITS Character variable used as label for units of concentration in program
output.
11 - 20 Al10 VUNITS Units of ground-water velocity.
21 - 30 Al0 DUNITS Units of dispersion coefficient.
31 - 40 A0 KUNITS Units of solute-decay coefficient.
41 - 50 AlD LUNITS Units of length.
51 - 60 Al0 TUNITS Units of time.
4 1-10 Fi10.0 co Solute concentration at inflow boundary.
11 - 20 F10.0 VX Ground-water velocity in x-direction.
21 - 30 F10.0 DX Longitudinal dispersion coefficient.
31 - 40 F10.0 DY Transverse dispersion coefficient.
41 - 50 Fl10.0 DK First-order solute-decay coefficient.
5 1-10 F1l0.0 W Aquifer width (aquifer extends fromy = 0 to y = W).
11 - 20 F10.0 Y1 Y-coordinate of lower limit of finite-width solute source.
21 - 30 F10.0 Y2 Y-~coordinate of upper limit of finite-width solute source.
8 1 - 80 8Fl10.0 X(I) X-;gor?inates at which solution will be evaluated (eight values per
ne).
7 1 - 80 8Fl0.0 ¥(I) Y-;gor?inates at which solution will be evaluated (eight values per
ne). .
8 1~ 80 8F10.0 (I) TiT: vglues at which solution will be evaluated (eight values per -
ne).
1g 1-10 F10.0 XSCLP Scaling factor by which x-coordinate values are divided to convert them
to plotter inches.
11 - 20 F10.0 YSCLP Scaling factor used to convert y-coordinates into plotter inches.
21 - 30 Fl10.0 DELTA Contour increment for plot of normalized concentration (must be between

0.0 and 1.0).

1pata line is needed only if IPLT (in data set 2) is greater than 0.

Source concentration (C,)

From these values, the terms obtained are

Dispersion in x-direction (D,)
Dispersion in y-direction (D,)

The input data set for sample problem 6 is shown in
figure 13A. A computer-generated contour plot of
normalized concentration (C/C,) at each time value is
shown in figure 13B. The lack of symmetry about the
centerline of the chloride plume is due to the effect of
the closer lateral boundary (at y=0). Lines of equal

=1,000 mg/L.

=200 ft%/d
= 60 ft¥d.

Concentrations are calculated at 150-ft intervals along
the x-axis for 4,500 ft, and at 100-ft intervals along the
y-axis for 3,000 ft. Chloride concentration distribution
after 1,500 and 3,000 days is simulated.

concentration are perpendicular to the lateral bound-
ary, indicating that conecentration gradients in the
y-direction equal zero and, thus, no solute flux oecurs
across the boundary. Program output for this sample
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problem is presented in attachment 4. Sample prob-
lem 6 required 52 s of CPU time on a Prime model
9955 Mod II.

Aquifer of infinite width with
inite-width solute source

Governing equation
Two-dimensional solute-transport equation:

aC azc FC_9C
E‘ DYV—V AC (86)

Boundary conditions:

C=C,, x=0and Y,<y<Y, (87a)
C=0, x=0 and y<Y, or y>Y, (87b)
C, %%z ’ y=%ow (88)

aC _ -
C, =0 X=00, 89

where
V =velocity in x-direction,
Y, =y-coordinate of lower limit of solute source at
x=0, and
Y, =y-coordinate of upper limit of solute source at
x=0.

Initial condition:

C=0, 0<x<o and —oo<y<+c0 at t=0 (90)

Assumptions:

1. Fluid is of constant density and viscosity.

2. Solute may be subject to first-order chemical trans-
formation (for a conservative solute, A=0).

3. Flow is in x-direction only, and velocity is constant.

4. The longitudinal and transverse dispersion coeffi-
cients (D,, D,) are constant.

Analytical solution

The following equation is modified from Cleary and
Ungs (1978, p. 17):

v
Cx,y,t)= 4\/ D exp(sz)

el

]
T4Dx'r

Y-y Yo-y)
{erf [2 \/D ] erfc[ \/—D?]}dﬂr, (91a)

To improve the accuracy of the numerical integration,
a variable substitution can be made where =74
yielding

g4

Cx,y,b= \/ D ex pI:ZD:| JZL I: (

. -y [ Y-y
{e"fc[zzzx/D_y] erfc[zzz\/D_y]}dz

Comments:

2
X
)Z 4I)xz4]

(91Db)

The integral in equation 91b cannot be simplified
further and must be evaluated numerically. A Gauss-
Legendre numerical integration technique was used in
the computer program written to evaluate the analyt-
ical solution and is described later. Round-off errors
may still occur when evaluating the solution for very
small values of x at late times.

Linear equilibrium adsorption and ion exchange can
be simulated by dividing the coefficients D, D,, and V
by the retardation factor, R (eq. 15). Temporal vari-
ations in solute concentration and odd-shaped source
configurations can be simulated through the principle
of superposition.

Description of program STRIPI

The program STRIPI computes the analytical solu-
tion to the two-dimensional solute-transport equation
for an aquifer of infinite width with a finite-width or
“strip” solute source at the inflow boundary. It con-
sists of a main program and the subroutine CNRMLI.
The functions of the main program and subroutine are
outlined below; the program code listing is presented
in attachment 2.

The program also calls subroutines EXERFC and
GLQPTS and the output subroutines TITLE, OFILE,
PLOT2D, and CNTOUR, which are common to most
programs described in this report. These subroutines
are described in detail later.

Main program

The main program reads and prints all input data
needed to specify model variables. The required input
data and the format used in preparing a data file are
shown in table 5. The routine then calls the subroutine
GLQPTS, which reads the data file GLQ.PTS contain-
ing values of the positive roots and weighting fune-
tions used in the Gauss-Legendre numerical integra-
tion technique.
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Table 5. —Input data format for the program STRIPI

Data Variable
set Columms Format name Description
1 1-60 A60 TITLE Data to be printed in a title box on the first page of program output.
Last line in data set must have an "=" in colum 1. First four lines
are also used as title for plot.
2 1-4 T4 X Number of x-coordinates at which solution will be evaluated.
5-8 I4 NY Number of y-coordinates at which solution will be evaluated.
9 -12 14 NT Number of time values at which solution will be evaluated.
13 - 16 I4 NMAX Number of terms used in the numerical integration techniques (must be
equal to 4, 20, 60, 104, or 256).
17 - 20 14 IPLT Plot control variable. Contours of normalized concentration will be
plotted if IPLT is greater than 0.
3 1-10 Al CUNITS Character variable used as label for units of concentration in program
output.
11 - 20 Al0 VUNITS Units of ground-water velocity.

21 - 30 AlO DUNITS Units of dispersion coefficient.

31 - 40 AlO KUNITS Units of solute-decay coefficient.

41 - 50 Al0 LUNITS Units of length.

51 - 60 Al0 TUNITS Units of time.

4 1-10 F10.0 Cco Solute concentration at inflow boundary.

11 - 20 F10.0 A4 Ground-water velocity in x-direction.

21 - 30 F10.0 DX Longitudinal dispersion coefficient.

31 - 40 F10.0 DY Transverse dispersion coefficient.

41 - 50 F10.0 DK First-order solute~decay coefficient.

5 1-10 F10.0 Y1 Y-coordinate of lower limit of finite-width solute source.
11 - 20 F1l0.0 Y2 Y-coordinate of upper limit of finite~width solute source.
6 1-280 8F10.0 X(I) X-:gor?inates at which solution will be evaluated (eight values perxr
ne).
7 1-80 8F10.0 Y(I) Y-igor?inates at which solution will be evaluated (eight values per
ne).
8 1 - 80 8F10.0 T(I) TiT: v§lues at which solution will be evaluated (eight wvalues per
ne).
1g 1~ 10 F1l0.0 XSCLP Scaling factor by which x-coordinate values are divided to convert them
to plotter inches.
11 - 20 F10.0 YSCLP Scaling factor used to convert y-coordinates into plotter inches.
21 - 30 F10.0 DELTA Contour increment for plot of normalized concentration (must be between

0.0 and 1.0).

1pata line is needed only if IPLT (in data set 2) is greater than O.

The program next executes a set of three nested
loops. The inner loop calls subroutine CNRMLI to
calculate the concentration at all specified y-
coordinate values for a particular x-coordinate value
and time. The middle loop cycles through all x-
coordinate values. The outer loop cycles through all
specified time values and prints a table of concentra-
tion in relation to distance for each time. Model output
can also be plotted as a map showing lines of equal
solute concentration.

Subroutine CNRMLI

Subroutine CNRMLI calculates the normalized con-
centrations (C/C,) for a particular time value and
distance. The integral in equation 91 is evaluated
through a Gauss-Legendre numerical integration
technique. The normalized roots of the Legendre
polynomial and the corresponding weighting functions
are passed by subroutine GLQPTS and scaled in the
subroutine to account for the non-normalized limits of
integration (from 0 to t" rather than from —1 to +1).



38 TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS

The number of terms summed in the numerical
integration (equivalent to the order of the polynomial)
is specified by the user. Roots of the Legendre poly-
nomial of order 4, 20, 60, 104, and 256 are provided in
data file GLQ.PTS. In general, the more terms used in
the integration, the more accurate the approximation;
however, this must be weighed against the corre-
sponding increase in computational effort and time.
Additional discussions of the numerical integration
technique are presented in a later section describing
subroutine GLQPTS.

Sample problem 7

In sample problem 7, contaminant migration from a
waste-disposal pond through the upper glacial aquifer
of Long Island, N.Y., is simulated. Data are from a
numerical modeling study by Pinder (1973). Model
variables are

Lower limit of solute source (Y,) =635 ft
Upper limit of solute source (Y,) =865 ft
Ground-water velocity (V) =1.42 ft/d

Longitudinal dispersivity (o) =70 ft
Transverse dispersivity () =14 ft
Source concentration (C,) =40 mg/L.

Lateral boundaries are far enough from the area of
interest that the aquifer can be treated as being
infinite in width, From these values, the terms
obtained are

100 ft2/d
20 ft%/d.

Concentrations are calculated at 100-ft intervals along
the x-axis for 3,000 ft, and at 50-ft intervals on the
y-axis for 1,500 ft. Concentration distributions after 5
years (1,826 days) are simulated.

The input data set for sample problem 7 is shown in
figure 14A. A computer-generated contour plot of
normalized concentration (C/C,) is shown in figure
14B. Program output for this sample problem is
presented in attachment 4. Sample problem 7 required
1 min (minute) 25 s of CPU time on a Prime model
9955 Mod II.

Dispersion in x-direction (D,)
Dispersion in y-direction (D,)

Aquifer of infinite width with solute
source having gaussian concentration
distribution

Governing equation

Two-dimensional solute-transport equation:

aC _ 4°C C _. aC
at—Dx8x2+Dyay2 Vax AC 92)

Boundary conditions:

—(r— 2
c=cmexp[—(¥2L°)J, x=0  (93)
20
aC_ _
C, ay—O, y=*w (94)
aC_ o
c, £=0, x=00, (95)

where
C,, =maximum concentration at center of gaussian
solute source,
Y. =y-coordinate of center of solute source at x = 0,
and
o =standard deviation of gaussian distribution.

Initial condition:

C=0, 0<x<wand —w<y<+o att=0 (96)

Assumptions:

1. Fluid is of constant density and viscosity.

2. Solute may be subject to first-order chemical trans-
formation (for a conservative solute, A=0).

3. Flow is in x-direction only (V,=0), and velocity is
constant.

4. The longitudinal and transverse dispersion coeffi-
cients (D, D,) are constant.

Analytical solution

The following equation is modified from Gureghian
and others (1980, p. 905):

Cxo Vx
Ckxy,t)= \/é—{ﬁ_exl)[ﬁ]

[_ X =Y ]
R L T LY o
: f 2_, O

3
12 V/Dyr+02
2

[

where
2
B=1D,

+\

and 7 is a dummy variable of integration for the time
integral.

To improve the accuracy of the numerical integra-
tion, a variable substitution (modified from Cleary and
Ungs, 1978, p. 20) can be made where r=Z%, yielding
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o f

Sample Problem 7 -- Solute transport in a semi-infinite
aquifer of infinite width with a continuous 'strip’ source
Model Data: V-1.42 ft/d, DX=~100.0 ft*¥2/d, DY=20.0 ft**2/d
Y1=635 ft, Y2=865 ft, CO=40.0 mg/L
31 31 1106 1
MG/L FT/D FT*%2/D PER DAY  FEET DAYS
40.0 1.42 100.0 20.0 0.0
635.0 865.0
0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0
800.0 900.0 1000.0 1100.0 1200.0 1300.0 1400.0 1500.0
1600.0 1700.0 1800.0 1900.0 2000.0 2100.0 2200.0 2300.0
2400.0 2500.0 2600.0 2700.0 2800.0 2900.0 3000.0
0.0 50.0 100.0 150.0 200.0 250.0 300.0 350.0
400.0 450.0 500.0 550.0 600.0 650.0 700.0 750.0
800.0 850.0 900.0 950.0  1000.0  1050.0  1100.0  1150.0
1200.0  1250.0  1300.0  1350.0  1400.0  1450.0  1500.0
1826.0
500. 500, 0.1
B
SOnPLe Problem 7 —- Solute transport in a semi-tnfinite
aquifer of iLnfinlte width with a continuous “strip’ source
Model Data: V=1.42 ft/d, DX=100.0 fixx2/d, DY=20.0 ftxx2/d

Y1=635 ft, Y2=865 ft, C0=40.0 mg/L

T 7 T T
NORMALIZED CONCENTRATION AT TIME - 1826. DAYS
CONTOUR INTERVAL ~ 0.1C/Co

2000

1500 ~

1000

500

DISTANCE ALONG Y-AXIS, IN FEET

0 500 1000 1500 2000 2500 3000
DISTANCE ALONG X-AXIS, IN FEET

. Figure 14.—(A) Sample input data set, and (8) computer plot of normalized concentration contours generated by the
program STRIPI for a conservative solute in an aquifer of infinite width with finite-width solute source after 1,826 days
(sample problem 7).
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2C,xo Vx
C(X’y’t)_\/Z’TTDX expl:ZDx:l
2 2
N _(y-Yc)]
exp[ BZ D73 iy dz
¢ ’ (98)
v
where
o2
’y=I:DyZ4+E .
Comments:

The integral in equation 98 cannot be simplified
further and must be evaluated numerically. A Gauss-
Legendre numerical integration technique was used in
the computer program written to evaluate the analyt-
ical solution and is described later.

Linear equilibrium adsorption and ion exchange can
be simulated by first dividing the coefficients D,, D,
and V by the retardation factor, R (eq. 15). Temporal
variations in solute concentration can be simulated
through the principle of superposition.

Description of program GAUSS

The program GAUSS computes the analytical solu-
tion to the two-dimensional solute-transport equation
for an aquifer of infinite width with a solute source
having a gaussian concentration distribution along the
inflow boundary. It consists of a main program and the
subroutine CNRMLG. The funetions of the main pro-
gram and subroutine are outlined below; the program
code listing is presented in attachment 2.

The program also calls the subroutine GLQPTS
and the output subroutines TITLE, OFILE, and
PLOT2D, which are common to most programs
described in this report. These subroutines are
described in detail later.

Main program

The main program reads and prints all input data
needed to specify model variables. The required input
data and the format used in preparing a data file are
shown in table 6. The routine then ealls the subroutine
GLQPTS, which reads the data file GLQ.PTS contain-
ing values of the positive roots and weighting func-
tions used in the Gauss-Legendre numerical integra-
tion technique.

The program next executes a set of three nested
loops. The inner loop calls subroutine CNRMLG
to calculate the concentration at all specified y-
coordinate values for a particular x-coordinate value
and time. The middle loop cycles through all x-

coordinate values. The outer loop cycles through all
specified time values and prints a table of concentra-
tion in relation to distance for each time value. Model
output can also be plotted as a map showing lines of
equal solute concentration.

Subroutine CNRMLG

Subroutine CNRMLG calculates the normalized
concentration (C/C,,) for a particular time value and
distance. The integral in equation 98 is evaluated
through a Gauss-Legendre numerical integration
technique. The normalized roots of the Legendre
polynomial and the corresponding weighting functions
are passed by subroutine GLQPTS and scaled in the
subroutine to account for the non-normalized limits of
integration, from 0 to t" rather than from —1 to +1.

The number of terms summed in the the numerical
integration (equivalent to the order of the polynomial)
is specified by the user. Roots of the Legendre poly-
nomial of order 4, 20, 60, 104, and 256 are provided in
data file GLQ.PTS. In general, the more terms used in
the integration, the more accurate the approximation;
however, this must be weighed against the corre-
sponding increase in computational effort and time.
Additional discussions of the numerical integration
technique are presented in a later section describing
subroutine GLQPTS.

Sample problems 8a and 8b

Two sample problems are presented. Sample prob-
lem B8a is modified from an example presented in
Gureghian and others (1980) for a conservative solute
uniformly mixed in a thin aquifer of infinite width.
Model variables are

Maximum concentration (C,,) =1,000 mg/L
Standard deviation of gaussian

distribution (o) =130 ft
Center of solute source (Y,) =450 ft
Ground-water velocity (V) =4 ft/d
Coefficient of longitudinal

dispersion (D,) =150 ft?/d
Coefficient of transverse dispersion

(D,) =30 ft?/d.

Concentrations are calculated at 50-ft intervals along
the x-axis for 1,700 ft, and at 25-ft intervals on the
y-axis for 900 ft. The chloride concentration distribu-
tion after 300 days is simulated.

Sample problem 8b demonstrates two methods of
calculating a value for o. Aquifer dimensions, ground-
water velocity, and dispersion coefficients are the
same as in problem 8a. Concentrations measured in
monitoring wells 500 ft downgradient from a waste-
disposal site are presented in table 7; figure 15 pre-
sents a plot of the normalized concentration (C/C,,) in
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Table 6. —Input data format for the program GAUSS

Data Variable
set Columms  Format name Description
1 1 - 60 A60 TITLE Data to be printed in a title box on the first page of program output.
Last line in data set must have an "=" in column 1. First four lines
are also used as title for plot.
2 1- &4 T4 NX Nunber of x-coordinates at which solution will be evaluated.
5- 8 14 NY Number of y-coordinates at which solution will be evaluated.
9 -12 14 NT Number of time values at which solution will be evaluated.
13 - 18 I4 NMAX Number of terms used in the numerical integration technique (must be
equal to 4, 20, 60, 104, or 256).
17 - 20 14 IPLT Plot control variable. Contours of normalized concentration will be
plotted if IPLT is greater than 0.
3 1-10 A10 CUNITS Character variable used as label for units of concentration in program
output.
11 - 20 Al0 VUNITS Units of ground-water velocity.
21 - 30 Al0 DUNITS Units of dispersion coefficient.
31 - 40 Al0 KUNITS Units of solute-~decay coefficient.
41 - 50 AlD LUNITS Units of length.
51 - 60 Al0 TUNITS Units of time.
4 1-10 F10.0 (o] Maximum solute concentration at inflow boundary.
11 - 20 F10.0 X Ground-water velocity in x-direction.
21 - 30 F10.0 DX Longitudinal dispersion coefficient.
31 - 40 F10.0 DY Transverse dispersion coefficient.
41 - 50 F10.0 DK First-order solute-decay coefficient.
5 1-10 Fl10.0 YC Y-coordinate of center of gaussian-distributed solute source,
11 - 20 F10.0 Wws Standard deviation of gaussian distribution describing solute source.
6 1 - 80 8F10.0 XD X-]c:orc)iinat.es at which solution will be evaluated (eight values per
ne).
7 1 - 80 8F10.0 Y(I) Y-tl:gorc)iinates at which solution will be evaluated (eight values per
ne). :
8 1-80 8F10.0 T(I) T:lT: vglues at which solution will be evaluated (eight values per
ne).
1g 1 -1 F10.0 XSCLP Scaling factor by which x-coordinate values are divided to convert them
to plotter inches.
11 - 20 F10.0 YSCLP Scaling factor used to convert y-coordinates into plotter inches.
21 - 30 F10.0 DELTA Contour increment for plot of normalized concentration (must be between

0.0 and 1.0).

1pata line is needed only if IPLT (in data set 2) is greater than 0.

relation to distance along the y-axis (normal to the
direction of flow). An average value of o, calculated
from the observed concentrations (table 7) using equa-
tion 70, is 66.1 ft. The area under the curve in figure
15 can also be approximated and yields a o value of
65.0 ft. A value of 65 ft was used in the input data for
sample problem 8b.

Input data sets for sample problems 8a and 8b are
shown in figures 16A and 17A. Computer-generated
contour plots of normalized concentration (C/C,,) are
shown in figures 16B and 17B. Comparison of figures
16B and 17B shows the effect of varying ¢ on the
concentration distribution. Program output for sample
problem 8a is presented in attachment 4. Sample
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Table 7.—Measured solute concentrations in monitoring
wells downgradient from the waste-disposal site in
sample problem 8b

[Well locations shown in fig. 11}

Well location

(x and y Measured solute Calculated value
coordinates), concentration, in of o, in feet

in feet milligrams per liter (from eq. 71)

0, 200 2 70.9

0, 250 12 67.2

0, 300 65 64.2

0, 350 310 65.3

0, 400 725 62.3

0, 450 1,000 .

0, 500 760 67.5

0, 550 290 63.6

0, 600 82 67.1

0, 650 9 65.2

0, 700 1 67.3

problems 8a and 8b required 24 s of CPU time on a
Prime model 9955 Mod II.

Three-Dimensional Solute
Transport

Several analytical solutions are available for the
three-dimensional form of the solute-transport equa-
tion (eq. 9), including those presented in Cleary and
Ungs (1978), Huyakorn and others (1987), Codell and
others (1982), Sagar (1982), and Hunt (1978). These
solutions are particularly useful, as they can simulate
transport of contaminants from sources in relatively
thick aquifers when both vertical and horizontal
spread of the solute is of interest. In addition to a
solution modified from Cleary and Ungs (1978, p.
24-25), two solutions were derived by the author for
this report. Detailed derivations of these solutions are
presented in attachment 1.

In the first solution presented, the aquifer is
assumed to be of infinite extent along all three coor-
dinate axes. Fluid is injected into the aquifer through
a point source at a constant rate and solute concentra-
tion (C,). It is further assumed that the rate of
injection is low and does not disturb the predomi-
nantly uniform flow field. In the remaining solutions
presented in this section, the aquifer is assumed to be
semi-infinite in length and to have a solute source
located along the inflow boundary. The semi-infinite
aquifer can be either finite in both width and height,
extending from y=0 to y=W and from z=0 (the base

of the aquifer) to z=H, or infinite in width and height.
A diagram of an idealized three-dimensional aquifer of
semi-infinite length and finite width and height is
presented in figure 18.

The solute source, referred to as a “patch” source
(Cleary and Ungs, 1978), is of finite width and height
and extends from y=Y, to y=Y, and from z=7, to
z=Z, at x=0 (fig. 18). The concentration within the
patch is uniform and is equal to C,, except along the
boundary of the patch source, where it is equal to 0.5
C,. Elsewhere along the inflow boundary, the concen-
tration is 0. Combinations of patch sources could be
used to simulate odd-shaped concentration distribu-
tions or multiple sources through the principle of
superposition. First-order solute decay, adsorption,
and ion exchange can also be simulated. A solution for
a “gaussian source” of finite height along the boundary
is given in Huyakorn and others (1987).

Three computer programs, POINT3, PATCHF,
and PATCHI, were developed to calculate concentra-
tions in these systems as a function of distance and
elapsed time. They are described in this section.

Aquifer of infinite extent with
continuous point source

Governing equation

The analytical solution for a continuous point source
has been derived by first solving the solute-transport
equation for an instantaneous point source and then
integrating the solution over time. The three-
dimensional solute-transport equation for an instan-
taneous point source is given by

aC _é*C _ o*C _&C _aC Qdt
ot Dz tDypztD 2=V mACH= 7
B(x—X)¥(y~-Y )d(z—Z)d(t -t"). 99)
Boundary conditions:
G, %mp,  xmrw (100
ax
c, aC_ ’ g=to0, (102)
0z
where

V =velocity in x-direction,

Q =fluid injection rate,

dt =infinitesimal time interval,
8( ) =dirac delta function,
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